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Abstract
A planar superlattice of Josephson junctions is studied theoretically and
numerically. The superlattice is made of laterally coupled long Josephson
tunnel junctions through idle regions. Static fluxon solutions are found
analytically and numerically. For narrow junctions the problem is reduced
to a system which is effectively nonlocal in space. We explore the nonlocality
effects on the local magnetic field components, the Josephson current and the
energy density, for a coherent homopolar fluxon array.

PACS number: 74.50.+r

1. Introduction

There has been a great interest in the last few years in the study of long Josephson junctions
as a means for the generation of rf waves in the gigahertz region. They can compete with
semiconductor based rf oscillators in the region above 100 GHz due to low noise, power and
size. It is well known by now that a long Josephson junction is a nonlinear device which
supports self-resonant solitonic modes (fluxons). A bias current applied to the junction causes
fluxons to move along the junction. As soon as the fluxon reaches the junction end it radiates
an electromagnetic pulse, and it is reflected back. Thus in this type of oscillator, a fluxon
moves between the junction ends, emitting radiation whenever it reaches the boundary. The
frequency f of the radiation is determined by the junction length L and the fluxon velocity u,
and is given by f = u/2L. The linewidth of the radiation is determined by the fluctuations of
the fluxon velocity.

In general, one is interested in increasing the output power of the radiation and making
its linewidth narrower. It has been found that phase-locking of N fluxon oscillators indeed
increases the output power as N2, and makes the linewidth narrower. This is the reason why
phase-locked arrays of fluxon oscillators are of technological interest today. Phase-locking
is achieved through coupling of fluxons in different oscillators. Thus, in the last few years
various types of phase-locked oscillators have been studied, such as parallel arrays of small
Josephson junctions either one-dimensional [1], or two-dimensional [2, 3], vertically stacked

0305-4470/02/4810409+19$30.00 © 2002 IOP Publishing Ltd Printed in the UK 10409

http://stacks.iop.org/ja/35/10409


10410 Y Gaididei et al

l’

n=-2

n=-1

n=0

n=1

n=2

L

l’

I/2

I/2

z

x

l

w

Figure 1. Schematic planar view of a Josephson junction superlattice.

long Josephson junctions [4–6], and laterally coupled long Josephson junctions [7, 8]. In
many cases the experimentalists managed to achieve phase-locking.

We shall consider the problem of N laterally coupled long Josephson junctions, which
are coupled through idle (or passive) regions, where there is no Josephson current. In other
words, we have an alternating structure of passive and active waveguides. This structure is
advantageous, because the idle regions cause a considerable increase of the fluxon limiting
velocity, thus increasing the frequency of the emitted radiation. The other advantage is that
the lateral idle region introduces dispersion [9] and therefore we have the possibility of wave
emission due to the Cherenkov phenomenon. The frequency of this radiation depends on the
value of the driving current and can be continuously varied.

In the following section, we shall describe the model and derive the nonlocal equations
for the phase differences of the junctions. According to the method employed, the Laplace
problems in the idle regions are solved, and subsequently they are coupled to the equations in
the junctions through the boundary conditions at the interfaces. This method is common in the
theory of antennas [10]. In section 3, we give the analytical static solution of coherent fluxon
motion along all junctions, together with the numerical solution. The results are valid for all
widths of the idle region, but we also give the solutions for the extreme cases of very small
and very large nonlocality, i.e. small or large idle region. In section 4, we give the theoretical
formulae for the magnetic field components, the Josephson current and the energy density.
Finally, in the last section we discuss the results and present the conclusions.

2. Superlattice model and equations of motion

We consider a two-dimensional Josephson junction which consists of two superconducting
metal plates (parallel to the x–z plane) separated by a thin oxide layer of variable thickness
(figure 1). The electromagnetic behaviour of such a system is governed by Maxwell’s equations
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coupled with the Josephson current–phase relation

Jy(x, z, t) = J (x) sin φ(x, z, t) (1)

for the tunnelling supercurrent density through the oxide layer, and the Josephson voltage–
phase relation

V (x, z) = h̄

2e
∂tφ(x, z, t). (2)

In equations (1) and (2) φ(x, z, t) is the phase difference of the order parameters between the
two superconductors and ∂t is the partial time derivative. The maximum Josephson current
density J depends on the material properties and on the thickness d of the oxide layer. We
will consider an alternating structure and assume that the thickness d(x) is a periodic function
of the space coordinate x of the form

d(x) =
{
dj if |x − �n| < w

2 n = 0,±1,±2, . . .

di otherwise

where w is the width of the window and � (� � w) is the width of the idle region. Thus the
centres of the junctions are separated by �x = �. We consider a contrasting periodic structure
with di � dj , so that due to the sharp exponential dependence of the Josephson current on
the thickness of the isolating layer d(x) we can assume that there is no Josephson current in
the regions with thick oxide layer di :

J (x) =
{
Jc if |x − �n| < w

2 n = 0,±1,±2, . . .

0 otherwise.

In this way the system under consideration is a periodic structure of Josephson junctions
(windows) separated by the idle regions.

If the thickness d(x) of the oxide layer is small compared with the London penetration
depths λ1, λ2 of the two superconducting films, a two-dimensional approach to this problem
is quite satisfactory [11] and the electrodynamics of the system is governed by the (2 + 1)-
dimensional sine-Gordon type equation with x-dependent parameters,

(
∂2
x + ∂2

z

)
φ = 1

c2(x)
∂2
t φ +

1

�2
j (x)

sin φ (3)

where the quantity

c(x) = c0

√
d(x)

ε(λ1 + λ2)

is the local velocity of electromagnetic waves, ∂x denotes the spatial derivative with respect to
x, etc, ε is the dielectric constant of the oxide layer, µ0 the permeability of vacuum, c0 is the
speed of light in vacuum and �j(x) is the local Josephson penetration length equal to

λj =
√

h

2eJcµ0(λ1 + λ2)

in the windows, while it tends to infinity in the idle regions.
Assuming that the width of the window w is small compared with the Josephson

penetration length, that is w � λj , we can regard the phase φ to be independent of the
coordinate x inside the window layer. In this case we can shrink the junction to a delta
function but scale up the critical current by a factor of w, so that the integrated critical current



10412 Y Gaididei et al

through each junction remains the same. Then the Josephson current given by equation (1),
can be written as

Jy(x, z, t) = w
∑

n

jn(z, t)δ(x − xn) (4)

with

jn = 1

λ2
j

sin φ(xn, z, t) (5)

where jn is the current through a single window junction. As is shown in appendix A, the
problem of the superlattice with very narrow junctions (as in equation (3) with equation (4))
can be presented in the form(

∂2
x + ∂2

z − g(x)∂2
t

)
φ = f (x)

1

λ2
j

sin φ (6)

where

g(x) = 1

v2
i

+
1

v2
j

f (x) (7)

with the structure function

f (x) = w
∑

n

δ(x − xn) (8)

where xn = n�, n = 0,±1,±2, . . . , and

v2
i = dic

2
0

ε(λ1 + λ2)
v2

j = djc
2
0

ε(λ1 + λ2)
(9)

are the phase velocities in idle regions and windows, respectively.
The numerical solution of equation (6) in the space domain of the superlattice requires

extensive calculations, which are not necessary because in most of the domain (except at
x = n�, n = 0,±1,±2, . . .) the system obeys linear equations. These equations can be
solved in the striped idle regions and connected to the solution in the narrow junctions. This
will lead to a system of coupled partial differential equations for the phase on the junctions
φn(z, t) ≡ φ(x = n�, z, t). Thus the nonlinearity is along one-dimensional domains.

Using the Fourier transform with respect to z and t

φ̄(x, k, ω) = 1

(2π)2

∫ ∞

−∞
dz

∫ ∞

−∞
dt φ(x, z, t) e−i(kz−ωt) (10)

where the bars distinguish the Fourier transformed quantities, one can represent
equations (6)–(8) in the form

−κ2φ̄(x, k, ω) + ∂2
x φ̄(x, k, ω) = w

∑
n

δ(x − xn)

[
1

λ2
J

sin φ(x, k, ω) − ω2

v2
j

φ̄(x, k, ω)

]
(11)

where the left-hand side vanishes outside the junction lines, and

κ =
√

k2 − ω2

v2
i

. (12)

In equation (11) the system obeys

−κ2φ̄(x, k, ω) + ∂2
x φ̄(x, k, ω) = 0
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everywhere except at x = xn = n�. In each domain n� < x < (n + 1)� the solution can be
written as

φ̄(x, k, ω) = An e−κx + Bn eκx

where the coefficients An,Bn can be written through the boundary conditions at x = n� and
x = (n + 1)� as functions of the phases φn(z, t) and φn+1(z, t). Across the nth junction due to
the delta functions we have discontinuities in the derivatives of φ. These derivatives involve
the constants An,Bn, and the corresponding ones An−1, Bn−1 in the domain below, which can
be eliminated by the boundary conditions for φ(x, z, t) at x = n� − 0 and x = (n − 1)� + 0,
i.e. the edges of the (n − 1)th idle region. The boundary conditions of the discontinuity of the
derivatives at x = n� will give us a sine-Gordon type equation for φn coupled to the phases
φn+1 and φn−1.

Thus, eliminating the waves in the linear media following the procedure used in
appendix A and applying the inverse Fourier transformation with respect to equation (10),
leads to the following expression for the field φ(x, z, t) for � � w in terms of the phases at
the nonlinear layers: φn(z, t) ≡ φ(xn, z, t)

φ(x, z, t) = − sinh[κ̂(x − (n + 1)�)]

sinh(κ̂�)
φn(z, t) +

sinh[κ̂(x − n�)]

sinh(κ̂�)
φn+1(z, t) (13)

for n� � x � (n + 1)� with n = 0,±1,±2, . . . , where the phases φn(z, t) can be found from
the set of coupled equations

κ̂

sinh �κ̂
(φn+1 + φn−1) − 2

κ̂

tanh �κ̂
φn − w

v2
j

∂2
t φn − w

λ2
j

sin φn = 0. (14)

In equations (13) and (14) the operator κ̂ is the Fourier multiplier operator defined by

κ̂φ(k, ω) ≡ 1

(2π)2

∫ ∞

−∞
dz

∫ ∞

−∞
dt e−i(kz−ωt)

√
−∂2

z +
1

v2
i

∂2
t φ(z, t) =

√
k2 − ω2

v2
i

φ(k, ω).

(15)

Thus, the dynamics of the system is described by the set of pseudo-differential or, in other
words, by nonlocal in time and space equations, taking into account the retarded behaviour
demanded by causality. The nonlocal character of the window junction dynamics is due to
the existence of two pathways for the energy transfer: directly along the window junction and
through the idle regions. This is seen more clearly in appendix B.

The system of equations (14) is still very complicated. Further simplification can be
achieved by taking into account that in contrast alternating structures (di � dj ) that we are
interested in, the velocity of the electromagnetic waves is much higher in the idle region
due to the decreased capacitance, that is vi � vj . Therefore, restricting ourselves to the
investigation of low-frequency behaviour

(
ω�
vi

� 1
)
, we shall neglect the effects of retarded

time and consider the limit vi → ∞. In this limit equations (13) and (14) reduce to

φ(x, z, t) = − sinh[k̂(x − (n + 1)�)]

sinh(k̂�)
φn(z, t) +

sinh(k̂(x − n�))

sinh(k̂�)
φn+1(z, t) (16)

for n� � x � (n + 1)� (n = 0,±1,±2, . . .), and the phase at the nth junction satisfies the
equation

k̂

sinh �k̂
(φn+1 + φn−1) − 2

k̂

tanh �k̂
φn − w

c2
j

∂2
t φn − w

λ2
j

sin φn = 0 (17)

where

k̂ =
√

−∂2
z .
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The last equation can also be written in the integral form
2

π

∫ ∞

−∞
dζ ln

[
coth

( π

2�
|ζ − z|

)]
∂2
ζ φn(ζ, t) +

π

4�2

∫ ∞

−∞
dζ sech2

[ π

2�
(ζ − z)

]
[φn+1(ζ, t)

+ φn−1(ζ, t) − 2φn(ζ, t)] − w

λ2
j

sin φn(z, t) − w

v2
j

∂2
t φn(z, t) = 0. (18)

From equation (18) we clearly see the nonlocal character of the junctions, so that we can
describe the behaviour from the local limit, where there are only low order derivatives to the
extreme nonlocal case where we obtain an integral equation.

In the extreme case of large � (� → ∞) there should be little coupling between junctions.
This can be seen because the second term is proportional to 1/�2, and for the case where there
are fluxons closely spaced in each junction (i.e. slightly displaced in each junction from the
vertical), it can be disregarded. This is the extreme nonlocal limit, where the kernel reduces
to that of Benjamin–Ono or sine-Hilbert [12].

It is also seen from equation (6) that the momentum

P = −
∫ ∞

−∞
dx

∫ ∞

−∞
dz g(x)∂tφ∂zφ (19)

and the Hamiltonian

H =
∫ ∞

−∞
dx

∫ ∞

−∞
dz

[
g(x)

1

2
(∂tφ)2 +

1

2
(∂xφ)2 +

1

2
(∂zφ)2 + f (x)(1 − cos φ)

]
(20)

are the integrals of motion, in the absence of damping,under the condition of periodic boundary
conditions or vanishing derivatives at z → ±∞ and x → ±∞. These relations will be useful
in the study of fluxons using the collective coordinate approach.

3. Static Josephson vortices

The solution is greatly simplified if we look at the time-independent problem. This means that
we neglect capacitive effects by observing at low velocities of fluxon motion, or in the extreme
case of static fluxons. As in the single window junction we expect that we still have fluxons
whose width, however, is influenced strongly by the size of the idle region. It is natural,
therefore, to see if we can obtain analytic solutions for a static coherent line of fluxons in an
infinite length. This is interesting since if this coherent configuration can also be propagated
we can have strong radiative effects.

For the static problem the phase φ does not depend on time. In this case the phases in the
windows φn can be found from the set of equations

k̂

sinh(k̂�)
(φn+1 + φn−1) − 2k̂

tanh(k̂�)
φn − w

λ2
j

sin φn = 0 (21)

or the equivalent form

k̂

sinh(k̂�)
(φn+1 + φn−1 − 2φn) − 2k̂ tanh

(
�k̂

2

)
φn − w

λ2
j

sin φn = 0. (22)

Introducing equation (13) into equation (20) we obtain that in the static case the energy
of the system can be expressed in terms of the phase of window junctions φn(z) as follows:

H =
∑

n

∫ ∞

−∞
dz

[
(∂zφn)

tanh
(

k̂�
2

)
k̂

(∂zφn) + (φn+1 − φn)
k̂

2 sinh(k̂�)
(φn+1 − φn)

]

+
∑

n

∫ ∞

−∞
dz

w

λ2
j

(1 − cos φn) (23)
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or equivalently

H =
∑

n

∫ ∞

−∞
dz

∫ ∞

−∞
dζ

{
1

π
(∂zφn) ln

[
coth

( π

2�
|ζ − z|

)]
(∂ζφn)

+
π

8�2
[φn(z) − φn+1(z)] sech2

[ π

2�
(ζ − z)

]
[φn(ζ ) − φn+1(ζ )]

}

+
w

λ2
j

∑
n

∫ ∞

−∞
dz[1 − cos φn(z)]. (24)

One of the physically reasonable excitation patterns mentioned above is the configuration
where the phases φn(z) are the same in all windows, i.e.

φn(z) = (z). (25)

For this excitation pattern the function (z) satisfies the equation√
−∂2

z tanh
�
√−∂2

z

2
 +

w

2λ2
j

sin  = 0 (26)

since the junction coupling terms cancel. In equation (26) we also wrote the explicit form of
the operator k̂. Using the dimensionless variable

ξ = w

2λ2
j

z (27)

equation (26) can be written in the form√
−∂2

ξ tanh

(
ν

4

√
−∂2

ξ

)
 + sin  = 0 (28)

or equivalently using the definition (15) in the integral form

1

π

∫ ∞

−∞
dξ ′ ln

[
coth

(π

ν
|ξ − ξ ′|

)]
∂2
ξ ′(ξ ′) − sin (ξ) = 0 (29)

where the nonlocality parameter

ν = w�

λ2
j

(30)

characterizes the significance of nonlocality effects in the system.
When ν � 1, while at the same time � > w, and from equations (26) and (29) we obtain

the usual pendulum equation
ν

4
∂2
ξ  − sin  = 0 (31)

which has the well-known sine-Gordon fluxon solutions of the form

 = 4 arctan

(
exp

(
2λjξ√

w�

))
≡ 4 arctan

(
exp

(
z

wf

))
. (32)

where

wf =
√

�

w
λj (33)

is the width of the fluxon.
When the distance � between junctions becomes very large (ν → ∞), equation (31) takes

the form

H{∂ξ} − sin  = 0 (34)
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where the notation H{f (x)} stands for the Hilbert transform of f (x), which is defined as

H{f (x)} ≡ P 1

π

∫ ∞

−∞
dx ′ f (x ′)

x ′ − x
(35)

where P denotes the Cauchy principal value of the corresponding integral. This means that
equation (26) reduces to the nonlinear sine-Hilbert equation whose solutions have the form of
algebraic solitons [12]:

 = π + 2 arctan(ξ) ≡ π + 2 arctan

(
wz

2λ2
J

)
. (36)

Note that the same equation as equation (26) describes magnetic vortices in a distributed
Josephson junction with electrodes of finite thickness [13]. An exact solution which
corresponds to an isolated Josephson fluxon was found in [13]. We describe the derivation of
this solution in more detail. We look for the solution of equation (26) which should yield for
(z) the result given by equation (31) in the limit ν → 0 whereas for � → ∞ we expect to
obtain (z) in the form of equation (36). We seek the solution of equation (26) in the form

 = 4 arctan(a sinh(bz) +
√

a2 sinh2(bz) + 1) (37)

where a and b are parameters to be determined. In order to determine a, b we shall follow
Joseph’s approach in his search for solitary waves in a finite depth fluid [14]. Using the Fourier
transform, equation (26) can be written as follows:

tanh

(
k�

2

)
= w

2λ2
j

sin 

i∂z
. (38)

Substituting equation (37) into equation (38), we obtain that equation (38) is satisfied if

a = sec(β/2) b = β

�
(39)

where the new parameter β is defined in the interval β ∈ (0, π) and is directly related to the
physical parameters of the system by the following transcendental equation:

β tan(β/2) = w�

2λ2
j

≡ ν

2
. (40)

Thus, the solution of equation (26) has the form

 = 4 arctan

[
sec

(
β

2

)
sinh

(
β

�
z

)
+

√
sec2

(
β

2

)
sinh2

(
β

�
z

)
+ 1

]
(41)

which can also be written as

 = −2 arctan

(
cos β

2

sinh β

�
z

)
. (42)

It is seen that when ν → 0 we have β → 0 and we obtain from equation (40)

β

�
	
√

w

λ2
j �

(43)

so that equation (41) reduces to the fluxon solution given by equation (32). When the distance
between windows increases (� → ∞), then

β = π(1 − ε) with ε 	 4λ2
j

w�
� 1. (44)
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Figure 2. The exact solution for the parameter β for w = 0.1 (solid line) and w = 0.5 (dashed
line) versus �. The dotted lines are calculated from the interpolation formula for the same w. The
points are numerical solutions including the extra local term.

In this case we obtain an algebraic soliton (equation (36))

 = 4 arctan


 wz

2λ2
j

+

√√√√(
wz

2λ2
j

)2

+ 1


 (45)

which is an equivalent form of equation (36) (see e.g. [12]).
Note that with a rather good accuracy the lhs of equation (40) in the interval β ∈ (0, π)

can be approximated as

β tan(β/2) 	 π2

2

β2

π2 − β2
. (46)

Thus, from equations (40) and (46) one can obtain an interpolation formula for the parameter β:

β = π√
1 +

π2λ2
j

w�

(47)

which is a good approximation in the whole interval [0, π] and it is exact in the two limits.
In figure 2 we compare β versus � from equation (40) (exact solution) and equation (47)
(interpolation formula) for two values of w. From this figure we see that the interpolation
formula agrees very well with the exact solution for β. We also give the parameter β from
the direct numerical solution including the small local term proportional to w which was
neglected. It was obtained by fitting the numerical results by the function (z) given in
equation (41) with β as the fitting parameter. We see that for w = 0.1 the agreement is very
good and even for w = 0.5 the agreement is within 5% for � > 4.

Equation (26) can be solved numerically in the Fourier space for the Fourier components
of the phase (z). Thus, taking the Fourier transform of equation (26) we get

2k tanh

(
k�

2

)
̄k + w[sin(z)]k = 0 (48)

where k takes the values km = 2πm
L

, with m = 0,±1,±2, . . . ,±nz, and nz = 1024 is the
number of Fourier components. The system of equations is solved with a simple relaxation
iteration scheme. For a relatively long junction, the numerical and the analytic solutions agree
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Figure 3. The fluxon profile z for � = 0.5 (solid line), � = 1.0 (dashed line) and � = 2.0 (dotted
line). The other parameters are w = 0.1, L = 80.
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Figure 4. Contours of φz(x, z) in steps of 0.02 for w = 0.1, � = 10.0, L = 80. The horizontal
dotted lines show the centre positions of the windows.

perfectly. For a short junction, there are differences close to the endpoints of the junction, due
to boundary effects.

Some fluxon profiles for L = 80, w = 0.1, are shown in figure 3, for � = 0.5 (solid line),
� = 1.0 (dashed line) and � = 2.0 (dotted line). One can see that the width of the fluxon
profile decreases considerably with increasing �. In the general case the parameter �/β is a
measure of the fluxon width. Here we remark that for the static problem the local wφzz term,
which would add a term wk2̄k to the left-hand side of equation (48), can be neglected safely
if w � � and the fluxon width is large, which limits the range of significant k values.

In figure 4, we show the contours of φz(x, z) for L = 80, w = 0.1 and � = 10.0, for a
superlattice with five windows. The horizontal dotted lines show the centre positions of the
windows.
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4. Energy density, fluxon content, Josephson current and magnetic field

The relation between the effective magnetic field 
H and the phase difference φ is given by

H = −êy × 
∇φ (49)

where H is normalized to 2π0
µ0(λ1+λ2)λj

, and êy is the unit vector normal to the junction plane.
It is seen that the magnetic pattern is two dimensional, so that it is necessary to define flux
penetration along both directions. Thus according to equation (49) the effective magnetic field
H is a two-dimensional vector in the plane of the barrier


H = (−∂zφ, 0, ∂xφ). (50)

The magnetic fluxes in units of the quantum flux 0 = h
2e

that penetrate the junction along
the two directions are [15]

Nx = 1

2π

∫ ∞

−∞
dzHx = 1

2π
(φ(x,∞) − φ(x,−∞)) (51)

Nz = 1

2π

∫ (n+1)�

n�

dx Hz = 1

2π
(φn(z) − φn+1(z)) (52)

for n� � x � (n + 1)� with n = 0,±1,±2, . . . . Note that the fluxon content Nx is a function
of x while Nz is a function of z.

Combining equations (4), (16), (50), (25) and (41) one can obtain that the Josephson
current through a single window jn(z) = j (z) and the components of the effective magnetic
field 
H can be written as follows:

jn(z) = − 2

λ2
j

cos
(

β

2

)
sinh

(
β

�
z
)

cos2
(

β

2

)
+ sinh2

(
β

�
z
) (53)

Hx(x, z) = −4
β

�

cos
(
β
(
n + 1

2 − x
�

))
cosh

(
βz

�

)
cos

(
2β

(
n + 1

2 − x
�

))
+ cosh

(
2 βz

�

) (54)

Hz(x, z) = −4
β

�

sin
(
β
(
n + 1

2 − x
�

))
sinh

(
βz

�

)
cos

(
2β

(
n + 1

2 − x
�

))
+ cosh

(
2 βz

�

) (55)

for n� � x � (n + 1)� with n = 0,±1,±2, . . . . Expressions (54) and (55) give the magnetic
field everywhere and are valid also in the windows from the continuity conditions used.

By an integration by parts in equation (29) and making use of the current conservation
equation

Jy ≡ w sin φn = ∂zJsurf (56)

we can define a local surface current Jsurf(z) which is a nonlocal function of the phase gradient
and is given as

Jsurf(z) = −i∂z tanh
�
√−∂2

z

2
 ≡

∫
dz′ G(z − z′)∂z′φn(z

′) (57)

where the kernel is given by

G(z − z′) = �

2π
ln
{

tanh
π

�
|z − z′|

}
. (58)

For the coherent fluxon line considered, the surface current is given by

Jsurf(z) = w

λ2
j tan

(
β

2

) ln
cosh

(
βz

�

)
+ sin

(
β

2

)
cosh

(
βz

�

) − sin
(

β

2

) . (59)
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Figure 5. (a) The effective magnetic field component Hx , (b) the effective magnetic field
component Hz, (c) the magnitude of 
H and (d) the angle of the magnetic field χ = tan−1(Hx/Hz),
all shown from the centre of the n = 0 window to the centre of the n = 1 window, for
L = 80, w = 0.1, � = 10.

In the local limit ν → 0 it reduces to the sine-Gordon result 2w

λ2
j

sech(z/wf ) equal to the local

phase gradient. For deviations from the local limit for small ν, the amplitude of the surface
current is

As = 2w
(
1 + 1

24ν
)
. (60)

For larger � the surface current deviates from w∂z.
Equations (54) and (55) show that while the normal component of the magnetic field

Hx (the component which is perpendicular to the windows) is a symmetric function in
both variables x and z, the tangential component Hz has a dipole-like behaviour: it
changes sign at the centre of the fluxon (z = 0) and at the centre of the idle region(
x = �

2

)
. In other words, one can say that the magnetic field rotates in the space

between windows while at the same time it moves along the windows. The planar
magnetic field components normal and parallel to the junction edge are shown in figures 5(a)
and (b), respectively. In figures 5(c) and (d), we also show the magnitude of the magnetic field
H, and the phase χ , with χ = tan−1(Hx/Hz), respectively. χ is the angle of the magnetic
field 
H from the x-axis (positive direction). Thus at z = 0 the magnetic field is parallel to
the x-axis. The same is true along the line x = �/2 for any z. If we see along the lower idle
region edge, as we go away from z = 0 towards z → ±L

2 the angle χ approaches about ±30◦

correspondingly and the opposite signs hold along the upper boundary of the idle region. If
we are at z = −L

2 and move up inside the idle region the direction of the magnetic field rotates
from χ = −30◦ to +30◦ and the opposite is true at the other end z = + L

2 . This is consistent
with the fact that in the idle region, due to the absence of Josephson energy, the magnetic
lines tend to open up more near the centre of the idle region along x = �/2. In figure 6(a) we
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Figure 6. (a) The Josephson current through a single window, Jn(z), for � = 0.5 (solid line),
� = 1.0 (dashed line) and � = 2.0 (dotted line). The other parameters are w = 0.1, L = 80.
(b) The energy density per unit width of the idle region, E(x), for w = 0.1, � = 2.0, L = 80, shown
as two separate contributions: the magnetic energy density Em (dashed line), and the Josephson
energy density, Ej (solid line). (c) The energy density per unit length of the window, E(z), shown
as two separate contributions: the magnetic energy density Em (solid line) and the Josephson
energy density, Ej (dashed line), for w = 0.1, � = 2.0, L = 80. (d) The integrated magnetic and
Josephson energies versus the idle region width, � (w = 0.1, L = 80).

plot the Josephson current through a single window, jn(z) for L = 80, w = 0.1 and � = 0.5
(solid line) � = 1.0 (dashed line) and � = 2.0 (dotted line). We see that with increasing �

the extrema in jn(z) shift. As we move along the tails to large z we still have an exponential
behaviour at the junction ends. Thus we have two different scales for the width and only in
the extreme case � → ∞ do we have only one scale in the form of the algebraic fluxons.

When the nonlocality parameter is small (ν � 1) we obtain from equations (53), (54)
and (55)

j (z) = − 2

λ2
j

sinh

(√
w

λ2
j �

z

)

cosh2

(√
w

λ2
j �

z

)

Hx 	 −2

√
w

λ2
j �

sech

(√
w

λ2
j �

z

)
(61)

Hz → 0.
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We see that in this case nonlocality effects are small and the behaviour of the phase difference,
the current density and the magnetic field is the same as in a single Josephson junction [11].

When the distance between windows increases (� → ∞) we get along the window

j (z) 	 − 2

λ2
j

zw

λ2
j

1 +
(

zw

λ2
j

)2 Hx 	 − w

λ2
j

1

1 +
(

zw

λ2
j

)2 Hz 	 − w

λ2
j

zw

λ2
j

1 +
(

zw

λ2
j

)2

where we used equation (44) and a Taylor expansion which is valid for z < �
π

. Note that in
contrast to the case of narrow idle regions, the nonlocal effects here change drastically the
behaviour of the phase difference, the current density and the magnetic field: instead of the
exponential law given by equations (61), now they decay algebraically

(∼ 1
|z|
)

at the junction

edges. For a finite length junction with L � �
π

the magnetic field is almost parallel to the
junction away from z = 0 and the junction ends. In fact the ratio of the magnetic field at the
idle region centre to that on the window for z = 0 and large � is∣∣∣∣∣H

(
x = (

n + 1
2

)
�, z = 0

)
H(x = n�, z = 0)

∣∣∣∣∣ → 2

π

λ2
j

w�

and for � → ∞ it goes to zero, i.e. the magnetic field lines are pushed towards the edges of
the idle region. If the junction length L � �

π
then for � → ∞ inside the idle region over

the length �
π

the magnetic lines are pushed towards the ends, while outside this range the
magnitude of H does not vary along x and the direction of H becomes almost vertical within
�x 	 0.15�.

It is interesting to see how the energy of the system varies along the normal to the window
junctions. This behaviour is characterized by the following energy density per unit length of
the x-axis:

E(x) =
∫ ∞

−∞
dz

[
1

2
(∂xφ)2 +

1

2
(∂zφ)2 +

1

λ2
j

f (x)(1 − cos φ)

]
. (62)

Inserting equations (25) and (41) into equation (62) we obtain that the energy density per unit
length of the idle region can be expressed as the sum

E(x) = Em(x) + Ej (x) (63)

where

Em(x) = 8β2

�2

∑
n

(
n + 1

2

)
� − x

sin 2β

�

((
n + 1

2

)
� − x

) (θ(x − n�) − θ(x − (n + 1)�)) (64)

is the density of magnetic energy of the system, and

Ej (x) = 4β
∑

n

δ(x − n�) (65)

is the energy density of the Josephson current. The magnetic energy density Em(x) and the
Josephson energy density Ej(x) are shown in figure 6(b), as dashed and solid lines, respectively,
for L = 80, w = 0.1 and � = 2.0. The Josephson energy is stored only in the window region
so it corresponds to the spikes while the magnetic energy is extended over the whole surface,
and for the choice of parameters it is almost constant along x except for a small variation.
The ratio between the minimum and the maximum values of the magnetic energy density is
approximately 0.97. For finite �, part of the magnetic energy is concentrated in the idle region:

Em

(
x = (

n + 1
2

)
�
)

Em(x = n�)
= sin β

β
. (66)
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This part depends on the physical parameters of the system through β. Recall that the
Josephson part of the energy includes a delta function so that the integrated magnetic and
Josephson energies are not very different (see figure 6(d) for comparison). In the limit
of ν → 0 when the nonlocality effects are unimportant the magnetic energy contribution
coincides with the Josephson one.

We can also see the variation of the energy density in the direction along the windows. We
can write as before E(z) as a sum of the corresponding magnetic energy density and Josephson
energy density E(z) = Em(z) + Ej (z), where

Em(z) = 1

2

∫ +∞

−∞
[(∂xφ)2 + (∂zφ)2] dx Ej (z) = Nw[1 − cos (z)]

with N being the number of windows in the superlattice. The energy densities Em, Ej , per unit
length of the window are shown in figure 6(c), for L = 80, w = 0.1 and � = 2.0, as solid and
dotted lines, respectively.

Finally, in figure 6(d) we plot the integrated magnetic and Josephson energies versus
the idle region width, �. Thus we see that in the local limit the Josephson energy is equal
to the magnetic energy, while with increasing � the magnetic energy increases faster. Ej

increases with � because the fluxon becomes wider. This should have the tendency to lower
the magnetic energy in the window but is increased due to the enlarged width of the idle region.
Asymptotically it becomes independent of �. Note that for � = 1 the ratio Em

Ej
	 1.01.

The Josephson energy per junction is for any � equal to εj = 4β, which in the small ν

and large � limits correspondingly goes as
Ej 	 4β small ν (67)

Ej 	 4π

(
1 − 4λ2

j

w�

)
large � (� → ∞) (68)

i.e. approaches a constant value 4π like 1/�.
From equation (64) the magnetic energy per junction, after some simple change of

variables, is

Em = 2
∫ β

−β

dx
x

sin x
. (69)

The small ν limit can be written as a Taylor expansion keeping the first two terms

Em 	 4β +
2

9
β3 (70)

while for large � we have the logarithmic singularity of the two-dimensional problem, like

Em 	 −4π ln
λ2

j

w�
+ c∞ (71)

where the constant c∞ is independent of �. From equation (69) the slope can be obtained as
dEm

d�
= 4

β

sin β

dβ

d�
(72)

with dβ

d�
obtained from the slope of figure 2 or from the empirical relation (47). So in the

limit of small ν we can estimate the slope at � = 1 to be nearly equal to 0.63, where we used
dβ

d�
(� = 1) 	 0.315. This is very close to the slope in figure 6(d). The ratio of the slopes of

Em and Ej for any � is

R ≡ dEm/d�

dEj/d�
= β

sin β
(73)

which means that as ν → 0 (β → 0) it approaches unity and as � → ∞ it goes to w�

4λ2
j

= ν
4 ,

which is the trend in figure 6(d).
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5. Conclusions

In this paper, we have discussed the problem of laterally coupled long Josephson junctions
in the form of a planar superlattice of alternating passive and active regions. We derived
a set of equations for the phases in the windows. We considered a physically reasonable
excitation pattern, with all the phases in the windows equal, which leads to coherent motion
when dynamics is considered. In this specific case we obtained an analytic solution, which
agrees very well with the numerical solution. It turns out that the nonlocality of the problem,
which comes in through the coupling with the idle regions, is significant. For small nonlocality
parameter ν (ν � 1) the equation has the well-known fluxon solution except that its width
is modified with respect to the usual sine-Gordon case. Namely, it becomes wf = λJ

√
�/w,

which is similar to that found in [16] for small idle region widths, for a single window junction
with lateral idle region.

Subsequently, we have calculated analytically various quantities, such as the fluxon
content, Nx and Nz, the magnetic field components Hx and Hz, the Josephson current through
a single window jn(z) and the energy densities E(x) and E(z). For jn(z),Hx and Hz we gave
separate formulae in two limiting cases, for small and large nonlocality parameters.

For the specific analytical solution we have described, the fluxon content Nz is zero, while
Nx = N fluxons, where N is the number of windows we consider. We also assume that the
junction is long enough so that the fluxons do not feel the boundaries. The magnetic field
rotates between windows, while at the same time it moves along windows. In the case of
small nonlocality parameter, we recover the usual behaviour of the magnetic field in a single
Josephson junction. The magnetic field components decay with increasing z in very different
ways for small and large nonlocality parameters. They decay exponentially as z → ±∞ in the
former case, while they decay algebraically in the latter. This is also valid for the Josephson
current density jn(z).

The energy density per unit length of the idle region E(x), and the energy density per
unit junction length E(z), can be analysed in two parts, a magnetic part and a Josephson part.
When ν → 0 (local limit), the integrated magnetic part equals the integrated Josephson part,
as it should. For larger �, part of the magnetic energy is stored in the idle region, depending
on the nonlocality of the system. The integrated magnetic and Josephson energies increase
smoothly with increasing idle region width, �.
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Appendix A

In this section, we derive the set of equations (6)–(9). Using the Fourier transform with respect
to z and t

φ̄(x, k, ω) = 1

(2π)2

∫ ∞

−∞
dz

∫ ∞

−∞
dt φ(x, z, t) e−i(kz−ωt) (74)

one can represent equation (3) in the idle regions

�n +
w

2
< x < �(n + 1) − w

2
n = 0,±1,±2, . . . (75)

in the form

−
(

k2 − ω2

v2
i

)
φ̄(x, k, ω) + ∂2

x φ̄(x, k, ω) = 0. (76)
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In the windows

|x − �n| <
w

2
n = 0,±1,±2, . . . (77)

the corresponding equation is

−
(

k2 − ω2

v2
j

)
φ̄(x, k, ω) + ∂2

x φ̄(x, k, ω) = 1

λ2
j

sin φ. (78)

The solution of equation (76) in the interval (75) has the form

φ̄(x, k, ω) = An(k, ω) e−κx + Bn(k, ω) eκx (79)

where

κ =
√

k2 − ω2

v2
i

. (80)

The condition that the phase φ and its derivative ∂xφ be continuous at the interfaces between
windows and idle regions leads to the relations

An e−κ(�n+ w
2 ) + Bn eκ(�n+ w

2 ) = φ̄
(
�n +

w

2
, k, ω

)
(81)

An e−κ(�n+ w
2 ) − Bn eκ(�n+ w

2 ) = − 1

κ
∂xφ̄(x, k, ω)|x=�n+ w

2
(82)

where φ̄(x, k, ω) is the solution of the window equation (78). Let us integrate equation (78)
with respect to x over the nth window. As a result, we get

∂xφ̄(x, k, ω)|x=�n+ w
2

− ∂xφ̄(x, k, ω)|x=�n− w
2

− w

(
k2 − ω2

v2
j

)
φ̄n(k, ω)

= 1

λ2
j

∫ �n+ w
2

�n− w
2

dx sin φ (83)

where we assumed that φ̄n(k, ω) is almost constant within the small width w and used the
abbreviation

1

w

∫ �n+ w
2

�n− w
2

dx φ̄(x, k, ω) = φ̄n(k, ω). (84)

Taking into account the boundary conditions given by equations (81) and (82) we can represent
equation (83) for � � w in the form

κ

sinh(κ�)

[
φ̄
(
(n + 1)� − w

2
, k, ω

)
+ φ̄

(
(n − 1)� +

w

2
, k, ω

)]

− κ

tanh(κ�)

[
φ̄
(
n� +

w

2
, k, ω

)
+ φ̄

(
n� − w

2
, k, ω

)]
− w

(
k2 − ω2

v2
j

)
φ̄n(k, ω)

= 1

λ2
j

∫ �n+ w
2

�n− w
2

dx sin φ. (85)

Assuming the window width w to be thin compared with the Josephson length λj , we consider
equation (85) in the limit w → 0 under the conditions

w

v2
j

≡ λ1 + λ2

c2

w

εdj

= constant (86)
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w

λ2
j

≡ 2eµ0(λ1 + λ2)

h̄
Jcw = constant. (87)

These conditions mean that the window capacitance per unit length
(∼ w

dj

)
and the critical

Josephson current per unit length (∼Jcw) are supposed to be kept constant when the width of
the window decreases. The other term proportional to w is omitted. This approximation is
well satisfied for wide fluxons.

Taking into account (see e.g. [15]) that in the small width limit the right-hand side of
equation (85) can be approximated as

1

w

∫ �n+ w
2

�n− w
2

dx sin φ 	 sin φn (88)

where the function φ̄n is given by equation (84), we obtain that the dynamics of the superlattice
of narrow Josephson junctions is governed by the set of equations

κ

sinh(κ�)
[φ̄n+1(k, ω) + φ̄n−1(k, ω)] − 2κ

tanh(κ�)
φ̄n(k, ω) + w

ω2

v2
j

φ̄n(k, ω) = w

λ2
j

sin φn(k, ω)

(89)

where n = 0,±1,±2, . . . . Using the inverse Fourier transform we can represent
equations (89) in real space and time variables as follows:

κ̂

sinh(κ̂�)
[φn+1(z, t) + φn−1(z, t)] − 2κ̂

tanh(κ̂�)
φn(z, t) − w

v2
j

∂2
t φn(z, t) = w

λ2
j

sin φn(z, t)

(90)

where n = 0,±1,±2, . . . , and κ̂ ≡
√

−∂2
z + 1

v2
i

∂2
t is the pseudo-differential operator defined

as

κ̂φ(k, ω) ≡ 1

(2π)2

∫ ∞

−∞
dz

∫ ∞

−∞
dt e−i(kz−ωt)

√
−∂2

z +
1

v2
i

∂2
t φ(z, t) =

√
k2 − ω2

v2
i

φ(k, ω).

(91)

It is worth noting that the set of equations (90) corresponds to the model of a superlattice of
infinitely narrow Josephson junctions which is described by the equation(

∂2
x + ∂2

z − 1

v2
i

∂2
t

)
φ = f (x)

(
1

λ2
j

sin φ +
1

v2
j

∂2
t φ

)
(92)

with

f (x) = w
∑

n

δ(x − xn) xn = n� n = 0,±1,±2, . . . . (93)

Appendix B

The nonlocal character of the window junction dynamics is clearly seen if we consider, for
example, the second term on the lhs of equation (14). Taking into account the well-known
expansion in series of simple fractions [17] and definition (15) of the operator κ̂, we can write

κ̂�

tanh �κ̂
φn(z, t) = φn(z, t) + 2�2

∞∑
m=1

1

κ̂2�2 + m2π2
κ̂2φn(z, t)

= φn(z, t) −
∫ ∞

−∞
dz′

∫ t

−∞
dt ′ K(ζ )θ(ζ )

(
∂2
z′ − 1

v2
i

∂2
t ′

)
φn(z

′, t ′). (94)
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Here θ(ζ ) is the step function and the abbreviation ζ =
√

v2
i (t − t ′)2 − (z − z′x)2 was used.

The kernel K(ζ ) is given by the expression

K(ζ ) = 2
1

(2π)2

∫ ∞

−∞
dk

∫ ∞

−∞
dω ei(k(z−z′)−ω(t−t ′))

∞∑
m=1

(
k2 − ω2

v2
i

+
m2π2

�2

)−1

= vi

∞∑
m=1

J0

(mπ

�
ζ
)

= −1

2
+

�

πζ
+

2�

π

N∑
m=1

1√
ζ 2 − 4m2�2

(95)

for 2N� < ζ < 2(N +1)�, where N = 0, 1, 2, . . . , is a natural number and J0(x) is the Bessel
function. We see from equation (95) that when ζ < 2� (N = 0) the kernel K(ζ ) has the form

K(ζ ) = −1

2
+

�

π

√
v2

i (t − t ′)2 − (z − z′)2
(96)

which corresponds to the signal motion along the junction only. But when 2� < ζ <

4�(N = 1)

K(ζ ) = −1

2
+

�

π

√
v2

i (t − t ′)2 − (z − z′)2
+

2�

π

√
v2

i (t − t ′)2 − (z − z′)2 − 4�2
(97)

and the last term in this expression describes the motion of the signal inside the idle region
and its reflection from the neighbour windows. It is seen from equation (95) that increasing
ζ makes the pathways with 3, 5, 7, . . . possible, and so on, reflections from the neighbour
windows. Note that the kernel which arises in the first term on the lhs of equation (14) has a
structure similar to equation (95) but the number of reflections here is always even which is
quite natural: this term in equation (14) describes the coupling between windows and depends
on the phases of the neighbouring junctions.
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